FNGINERING FO

Networking and IoT: future common challenges and assets

Next-generation IoT Smart Networks and Services Partnership, Stakeholder Workshop

04/07/2019, Bruxelles

www.nextworks.it

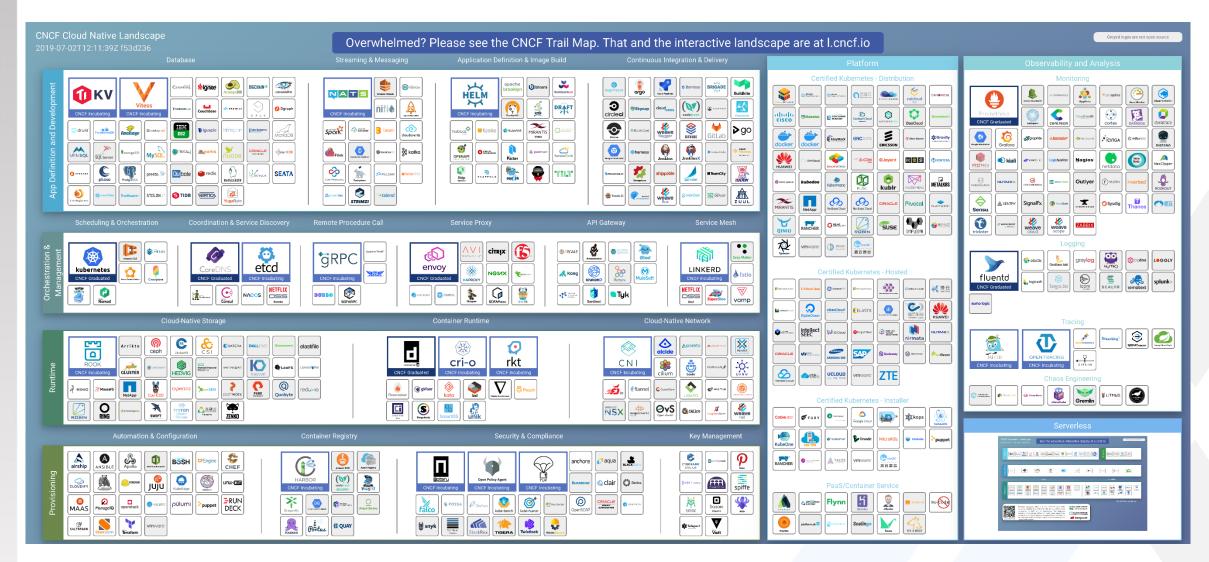
Nicola Ciulli Head of Research & Development n.ciulli@nextworks.it vertical application

connected things

communication network Where is the boundary (H/V) between a communication network and the connected devices?

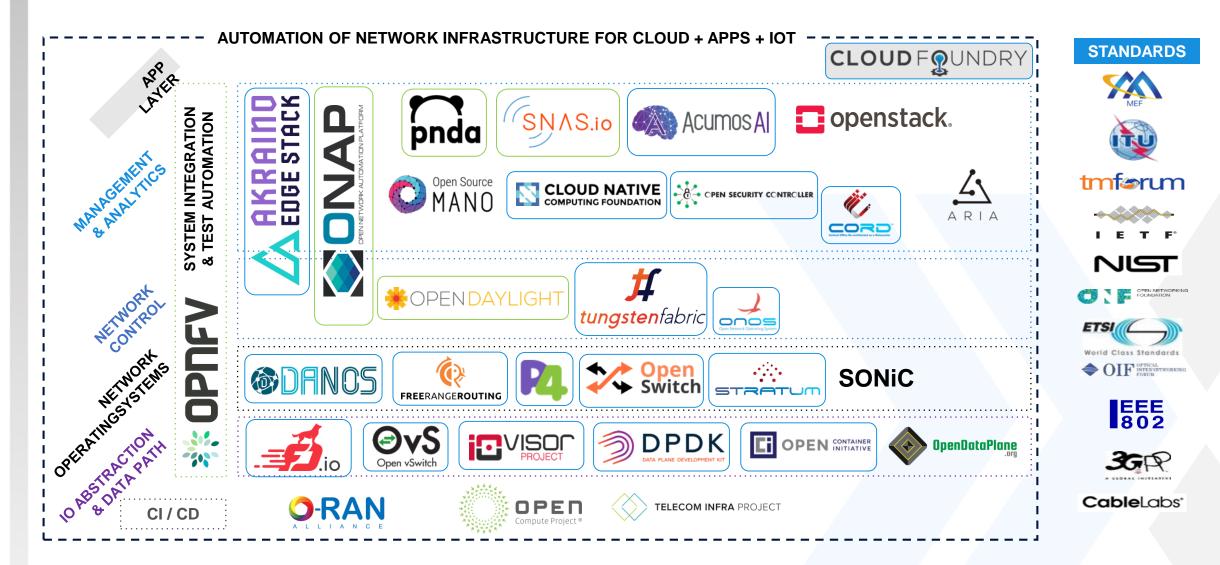
Where is the boundary between the "things", their platforms, and the applications on top?

Btw, can we really talk about data plane KPIs?


A forward look at networking and IoT symbiosis

- Communication networks and IoT to be more deeply integrated than today
 - Truly massive and hyper dense deployment of sensors/actuators (75B by 2025)
 - Truly seamless symbiosis of interworking platforms, models, functions (anywhere/any-device computing, programmable and function-based approach to data correlation, alerting, event processing, etc.)
 - Beyond the concept of "Network is the Internet"
 - Future networks will bring more than IP and HTML: quantum networks/security, centralized and swarm AI functions, nano-nets & protocols, etc.
 - Need for more efficient use of service-based architecture approaches to split and interface to the various cross-layer functions: p2p interfaces vs pub/sub across a shared infrastructure message fabric / service bus

Simplify the babel of protocols, platforms and ad-hoc solutions both in IoT and in networking


- Various emerging standards in M2M (e.g. OMA DM, LWM2M, MQTT, Google Thread, AllJoin/AllSeen, etc.), no final single voice expected
- Interoperability among IoT platforms remains a crafted solution for specific cases, or opens up to OTT (e.g. Google Home, Amazon's Alexa, Microsoft's Cortana)

A very complex landscape of cloud native technologies and solutions

Source https://landscape.cncf.io/

Open Source Networking / SDO Landscape

Source THE LINUX FOUNDATION NETWORKING https://www.linuxfoundation.org/projects/networking/

A forward look at networking and IoT symbiosis

Common R&D ground of technology domains

Common verticals with use cases that imply the strong interleaving of networking and IoT

Networking & IoT: future common challenges and assets -- Smart Networks and Services, Stakeholder Workshop / Next-generation IoT

Common verticals and use cases [1]

Vertical	Example Use Cases	Technical challenges
Smart Manufacturing	 Safe unfenced human-robot interaction in assembly lines 	 Heavy-duty industrial robots with high load capacities in an HRI-capable assembly process Industry-grade motion capturing systems Certifiable sensor systems in combination with real-time supervision (e.g. for accurate and reliable localization) Optimize response time of the whole safety system (⇒ edge computing)
Smart farming and food security	 Cooperative autonomous agriculture robots Massive monitoring of individual plants and animals Digital farm twin 	 Cooperation between robots and with humans Autonomous decisions (⇒ embedded AI at the edge) Autonomous operation during years (⇒ ultra-low-power loT) Massive M2M (low-rate) communication
Smart Mobility	 Autonomous and hyper-connected On-demand Urban Public Transportation 	 High volume of changes required by the mobility on- demand services ⇒ Integration of Data Analytics and AI mechanisms in OSS/BSS, and for the management of large sensor sets Advanced wireless connectivity and radio technologies such as positioning and tracking, multi-RAT mobility and connectivity Cloud and edge high-performance computing Massive scale of autonomous IoT networks

Common verticals and use cases [2]

Vertical	Example Use Cases	Technical challenges
Smart Water management	 Real-time water quality assessment and consumption optimization Advance in personalized water services Efficient operational management of the water infrastructure 	 Huge amount of sensors in remote / hard-to-reach areas (rivers, lakes, pipes, irrigation systems, sewage, etc.) ⇒ complex MTC Autonomous operation during years ⇒ ultra-low-power IoT Huge amounts of information collected ⇒ edge computing to reduce the data transmitted AI at platform level; e.g. to detect/predict water leaks,
Smart Energy management	• Management and maintenance of IoT tools with difficult accessibility	 potential contamination, misuses, etc. Potentially very large monitored area (e.g. rivers or lakes) = autonomous mobile platforms to capture information (UAV or USVs)
Smart Buildings	 Connected building Software Defined Building Cognitive building Human-centered building 	 Building facility functions interconnected and truly interoperable at the syntactic and semantic level ⇒ objects are understood and exchanged among subsystems through standard protocols and APIs Building facility completely monitored and controlled by IoT devices and Cyber-Physical Systems ⇒ its operations can be programmed by explicit software rules

Challenge area	Example challenges	Net-IoT balance
Network and	Integration of IoT and Network services	Net IoT
communication	AI/ML-enabled Network and Services for IoT	Net IoT
systems	Configuration, Orchestration and Open Device Management	Net
[Edge] Cloud and Fog	Convergence of protocols and SDN/NFV	N:t IoT
	Evolution of Fog and Edge Computing and Processing	Ne: IoT
	Support for Swarm Computing	Net IoT
Privacy, network &	Network & IoT security in highly virtualized networks	Net IoT
service security	Network & IoT security+reliability for mission critical infra/serv	Net IoT
	AI/ML support in support of network & IoT security	Net IoT
	IoT and Distributed Ledger Technologies (DLTs)	Net

Challenge area	Example challenges	Net-IoT balance
Platform, Federation,	Extreme automation + real-time zero-touch service orchestration	Net
Automation and	Service injection loop	Net IoT
Delivery	IoT distributed & federated archs, integrated with the net & AI	Net
	Support for network-unaware vertical services	Ne: IoT
IoT Applications, User	Digital Twins for IoT	Net I
experience	Tactile and Industrial-Tactile IoT	Net
Further technologies	Quantum Networking of Things	let loT
	Nano-Things Networking (IoNT)	Net IoT
	Bio-Nano-Things Networking (IoBNT)	Net IoT
	Core human (e.g. mind-to-mind) communication	Net IoT

Networking & IoT: future common challenges and assets -- Smart Networks and Services, Stakeholder Workshop / Next-generation IoT

No need for a one-fits-all solution

Dedicated platforms are ok; heterogeneity is ok

But walking together (network & IoT) through the various domains (data plane, management, etc.) could help a lot

- Avoid duplication of R&D efforts
- A portfolio of common approaches
- No need to craft solutions at each new purpose or platform

Questions?

Nicola Ciulli Head of Research & Development n.ciulli@nextworks.it info@nextworks.it www.nextworks.it HQ: via Livornese, 1027, 56122 Pisa (Italy) Tel: +39-050-3871600 Fax: +39-050-3871601

Networking & ICT: future common challenges a Smart the works and Services, Stakeholder Wo